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Abstract--The phase distribution and turbulence structure for solid/fluid upflow in a vertical pipe were 
investigated. Spherical particles, approximately 2 mm in diameter, were used and runs were made with 
particles having two different specific gravities. In particular, ceramic particles, which were heavier than 
water, and expanded polystyrene particles, which were lighter than water, were used. A new method is 
presented for the measurement of the volume fraction in solid/fluid two-phase flows using a laser-Doppler 
anemometer (LDA). The measured local time fractions obtained with the LDA must be corrected, because 
bias is produced by the presence of natural seeding, the finite size of the measurement volume and 
interruptions of the laser beams by the dispersed particles. An analytical method has been developed which 
accounts for these effects. A single-beam traversing 7-ray densitometer was used as a reference against 
which to assess the volume fraction correction method. Good agreement between the corrected LDA and 
7-ray densitometer results was obtained. The volume fraction profiles show that at low flow rates the 
ceramic particles have an almost uniform distribution, while increasing the flow rate causes coring. In 
contrast, the phase distribution of the light polystyrene particles had wall peaking for both the low and 
high flow rates. However, wall peaking was flattened as liquid flow rate was increased. 
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1. I N T R O D U C T I O N  

The transport of solid/fluid mixtures is an important phenomenon in many industrial applications. 
Much has been published, including both theoretical analyses and experimental data. However, 
relatively few experiments have been done for solid/fluid flows having relatively large particles. 
Detailed measurements in flowing solid/fluid systems are very difficult to perform, since most 
intrusive instrumentation is not applicable. The main parameters of interest are the local volume 
fraction, the mean velocities, the turbulence intensity and the Reynolds stress distribution for both 
phases. Detailed measurements are important for the understanding of the physical mechanisms 
which control the phase distribution processes in solid/fluid flows. Moreover, in solid/fluid flows 
light dispersed particles can be used to simulate bubbles. In this way, the effect of bubble shape 
and specific gravity on the lateral distribution of the dispersed phase can be studied. This is 
particularly important for the assessment of multidimensional two-fluid models. 

Phase distribution phenomena in two-phase flow is a challenging problem, since the phase 
interactions are not completely understood. Serizawa (1974) measured the lateral void distribution 
and the turbulent structure of the liquid phase for air/water upflow in a vertical pipe. His void 
distribution data showed wall peaking for bubbly flows, evolving into void coring (i.e. internal 
peaking) as the global void fraction increased and slug flow occurred. Wang et al. (1987) also made 
detailed measurements for upward and downward bubbly flows and found wall peaking of the void 
fraction for bubbly upflows and void coring for bubbly downflows. These data imply that the 
buoyancy of the dispersed phase plays an important role in determining the lateral phase 
distribution. Experimental results by ~un (1985), and others, have shown that bubble size and 
shape also affect the phase distribution. Indeed, small bubbles tend to concentrate near the wall, 
while larger bubbles migrate towards the pipe's centreline, resulting in coring. 

Akagawa et al. (1989) have performed measurements in particle/water flows using spherical 
particles, which were approximately 2 mm in diameter. They used an intrusive, reflective type, 
optical fiber sensor for both velocity and volume fraction measurements in vertical pipe upflows. 
The particles had three different densities: lighter, heavier and the same as the density of water. 
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Their experiments were done at relatively low liquid superficial velocities, (JL) ~< 1.0 m/s, and for 
global particle volume fractions up to 6%. They observed both wall peaking and coring in the 
measured volume fraction distribution. 

Sakaguchi et al. (1991) used a high-speed camera for the measurement of volume fraction and 
particle velocity. These measurements were done using aluminum ceramic spheres which were 4 mm 
in diameter, had a liquid velocity ranging between ( J L ) =  1.0 to 2.5 m/s and a global volume 
fraction in the range ( E ) =  0.5 to 1.5%. They observed particle coring at high velocities but, 
unexpectedly, wall peaking occurred at low velocities. Unfortunately, neither of the Japanese 
experiments include measurements of the turbulence structure and the Reynolds stress distribution, 
thus complete assessment of multidimensional two-fluids models is not possible. 

In the present study, the lateral phase distribution and detailed measurement of the velocity field 
were done for vertical upflows in a pipe. The particles used were approximately 2 mm in diameter 
and had two different densities (see table 1). A DANTEC fiber flow laser-Doppler anemometer 
(LDA) system gave accurate measurements of the local velocity, turbulence intensity and Reynolds 
stresses for both the solid and liquid phases. The combination of the LDA data, the correction 
method described in this paper and a single-beam 7-ray densitometer, also allowed for the accurate 
determination of the volume fraction distribution of the dispersed solid phase. 

The measurement of solid/fluid two-phase flows represents a difficult challenge, since nonintru- 
sive methods have to be applied. Fortunately, an LDA seems to be an ideal device for such 
measurements. Durst & Zar6 (1975) were apparently the first to report that satisfactory LDA 
signals could be obtained with large spherical particles. Since then, a lot of work has been done 
to measure particle velocity, size and number density. Wigley (1978) measured the size and velocity 
of large water droplets by using a dual-beam LDA system, in which the transit time could be 
measured by observing the reflections from the droplets. Farmer (1972, 1974, 1980) and Saffman 
(1987) developed models to measure the particle number density. Moreover, Saffman (1987) 
presented a method for the measurement of the local volume fraction using an LDA system. 
Unfortunately, this method is only valid for small spherical particles. 

It is of great interest to know the spatial distribution of the volume fraction of the solid phase 
(i.e. the particles) in a conduit. This important parameter can be measured by taking the sum of 
all the particle transit times, 6, at the particular location, r, and dividing by the total measurement 
time, T: 

N 

tj(r) 

~(r) =J='T [ll 

It should be noted that by integrating [1] over the pipe's cross-sectional area the average volume 
fraction, (E), can also be obtained. 

An LDA system can be used to measure the local volume fraction of large particles based on 
[1]. However, these results are biased because of the following reasons: 

(1) The LDA simultaneously measures both the large and small particles (i.e. 
seeding) which are present in the fluid phase. The transit time of the seeding 
contributes to the particle volume fraction, making it larger. 

(2) The LDA measurement volume is finite in size, instead of just measuring at one 
point. Hence, the inferred volume fraction represents an integration over the 
measurement volume. 

(3) The laser beam is interrupted by the solid particles between the laser source and 
the measurement volume. Whenever the beam is interrupted, the system is unable 
to measure and the effective measuring time is reduced. Since the actual time of 
measurement is larger than the effective one, [1] leads to a smaller measured 
volume fraction than the actual one. 

In order to measure the local volume fraction of the large particles with an LDA, the experimentally 
obtained results must be corrected for the above effects. The data correction method presented 
herein is valid for dilute slurries of solid spherical particles and liquid. 
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2. E X P E R I M E N T A L  M E T H O D  

The velocity and volume fraction distribution were measured with a state-of-the-art LDA system. 
All the components of  the LDA system, except the laser, were made by DANTEC Electronics. A 
Spectra-Physics (Stabilite 2016) argon ion laser was used as the source of  coherent light. The 
principles of operation of  an LDA have been described extensively in the literature (Durst et al. 
1981; Durrani & Greated 1977) and are not repeated here. The LDA probe was placed in the water 
tank with the test section. It consisted of  a submersible two-dimensional fiber optic probe, a beam 
expander and a sealed glass window, which was used to prevent lens abberration. The probe was 
mounted on a three-dimensional traversing mechanism, which allowed full probe positioning in all 
three orthogonal directions with a position accuracy of  _ 1 #m. The LDA system was operated 
in the backscatter mode. The whole process was controlled by an IBM AT microcomputer via 
an IEEE 488 interface. The same microcomputer was used for data acquisition and processing. 
Table 1 shows the principal characteristics of the LDA system. The test loop configurations used 
are shown in figures 1 and 2. 

The sensitivity to noise is reduced by the use of  a three-level burst detection scheme (DANTEC 
1989). Level 2 determines the start and stop of the particle's transit time measurement. The 
integration period starts at a positive crossing of level 2 and stops at a negative crossing of level 
2. The envelope must exceed level 3 for a burst to be accepted. Also, the signal must drop below 
level 1 before a new measurement can start. This procedure reduces the sensitivity to noise, since 
multiple crossings of level 2 are ignored as long as level 1 or 3 is not crossed. 

The test section was made of  optically clear transparent fluorinated ethylene propylene (FEP), 
a material with the same refraction index as water. The FEP pipe's inside diameter was 
D = 30.6 +__ 0.2 mm. The volume fraction profile was measured along the transverse x-axis at fixed 
y (the z-axis was oriented into the flow direction). The length of the measurement volume in the 
y-direction was approximately 1 mm (see Table 1). Thus, measuring along the y-axis would have 
given biased results since they would have involved significant spatial integration. Measuring along 
the x-axis reduced this error considerably. 

The particles used in these experiments were solid spheres with the characteristics shown in 
table 2. The ceramic particles were heavier, and the expanded polystyrene particles were lighter, 
than water, which was used as the continuous phase. The measured size distribution of the ceramic 
particles, which were used in the development of the correction method, is shown in figure 3. 

There are always some impurities or natural seeding, of different sizes and shapes, present in tap 
water. Leaving these impurities in the loop would deteriorate the LDA signal, decrease the 
signal-to-noise ratio and bias the liquid velocity measurements. In this study, the amount of these 
impurities was reduced by the filtration of the inlet water to a level where their effect became 
negligible. 

In the measurements of the fluid velocity special seeding was used. In particular, the liquid phase 
was seeded with Duke Scientific polystyrene spheres, 5 gm in diameter, with density close to that 

Table 1. Principal characteristics of  the L DA system 

Ar laser power (maximum) 4.0 W 
Green color wavelength a 385.7 nm 
Blue color wavelength a 365.8 nm 
Focal length o f  lenses 413.5 m m  
Beam spacing 70.0 m m  
Beam expansion 1.85 
Laser beam diameter at e -2 intensity 1.35 m m  
Half-angle of  intersection 4.84 ° 
Fringe spacing 2.287 # m  
Frequency shift (Bragg cell) 40 M Hz  
Calculated dimensions of  measurement volume: 
Minor  axis at e -2 intensity 0.082 m m  
Major  axis at e -2 intensity 0.964 m m  

"The green color wavelength of  the Ar laser beam is 
514,5 nm. Under  water, this value must  be divided by the 
index of  refraction for water, 1.334. The same is true for 
the blue beam, whose wavelength in air equals 488 nm. 

Table 2. Characteristics of  the spherical particles 

Standard 
Mean diameter deviation 

Material Sp. gr. [mm] [mm] 

Ceramics 2.450 2.32 +0.07 
Expanded polystyrene 0.032 1.79 +0.18 
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Figure 1. Schematic of the solid/liquid loop for the ceramic 
particles: 1, laser probe; 2, data acquisition; 3, y-densi- 
tometer; 4, separation tank; 5, drain; 6, water tank; 7, feed 

water; g, pump; 9, Venturi; 10, magnetic flowmeter. 

A 

Figure 2. Schematic of the solid/liquid loop for the poly- 
styrene particles: 1, laser probe; 2, data acquisition; 3, 

7-densitometer; 4, separation tank; 5, drain; 6, water tank; 
7, feed water; 8, pump; 9, Venturi; 10, magnetic flowmeter. 

of water (i.e. sp. gr. = 1.05), resulting in optimal tagging of the liquid phase. In addition, the good 
scattering characteristics of the seeding increased the signal-to-noise ratio, giving reliable measure- 
ments of the liquid phase velocity. 

The ratio between the particle and seeding size was approximately 1000, resulting in a large 
difference between the particle and seeding transit times. Hence, the measured transit time 
distribution clearly showed two distinct peaks. Therefore, separation between the seeding and the 
large particles, which comprised the dispersed phase, was easily accomplished. It will be shown that 
the associated error is negligible. 

Two loop configurations were used, one for the heavy particles (figure 1) and the other for the 
light particles (figure 2). The main difference between them was in the connection of the separation 
tank with the rest of the loop. The particles were circulating continuously in a secondary loop, 
comprised of the separation tank, a Venturi and the test section, and thus they did not pass through 
the pump. Otherwise, they would have been destroyed (ceramic particles) or deformed (expanded 
polystyrene particles). The distance between the inlet into the vertical pipe at point 5, figures 1 and 
2, and the test section was 2.2 m, allowing for fully developed flows. 

The particles entered a separation tank after leaving the test section. The relatively large 
cross-sectional area of the separation tank (inner diameter of approximately 0.15 m) reduced the 
mixture velocity so that buoyancy became the main driving force for particle motion. The heavy 
ceramic particles fell downwards, continuing to the test section through the Venturi pipe at the 
bottom of the separation tank (figure 1). In contrast, the light expanded polystyrene particles rose 
upwards to the Venturi, which was placed at the top of the separation tank (figure 2). In both cases, 
the liquid phase returned to the pump. 
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Figure 3. S ize  distribution of the large particles. 
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A calibrated magnetic flowmeter was used for the measurement of  the liquid flow rate, w. The 
uncertainty of  the measurement was approximately + 5 % .  The same result was achieved by 
integrating the velocity profiles. The superficial velocities of  the liquid phase, (JL),  and the solid 
phase, ( Js ) ,  were obtained from the integration of  the measured velocity and volume fraction 
profiles. Since the error in the velocity measurements was negligible, the main source of  uncertainty 
in the calculated superficial velocities was due to the error in the volume fraction results. The values 
for the liquid flow rate, w, and the superficial velocities, (JL) and ( i s ) ,  with their uncertainties 
are given in tables 3 and 4. 

The design of  the Venturi was crucial for the proper operation of  the secondary loop. The flow 
entering the Venturi divided into two branches, one going to the separation tank and the other 
to the inlet of the test section. By applying the Bernoulli equation, it can be shown that the liquid 
flow at the separation point is always oriented out of  the Venturi (i.e. into the test section and the 
separation tank). To determine these velocities, the Bernoulli equation can be written for the liquid 
between points A and B through the test section: 

2 2 
P/)A . PVB 

PA + --~-- + pgZA = PB + T + pgzB + Ape.Test. [2] 

Similarly, the Bernoulli equation for the liquid between A and B through the separation tank is 

2 pVA . pv~ 
PA + - - f -  -t- p g z  A = PB + - - ~  + pgzB + Ape, Tank, [3] 

where p is the pressure, p is the mixture density, v is the mixture velocity, g is gravity, z is the height 
and Apf, Test and Apr.T¢~ t are the irreversible pressure drops through the branch containing the test 
section and the separation tank, respectively. These irreversible pressure drops are defined as 

pv 2 
Ape = K ~ , [4] 

where K is the loss coefficient which accounts for both the distributed and local pressure losses in 
the branch, referenced to the pipe diameter at point A. Combining [2] and [3] yields 

Ape, Tan k = A p f ,  Tes t . [5] 

Using [4], [5] becomes 

/)Tank = VTest / ~  [6] 
~/ KTank " 

The loss coefficients and the liquid velocity in the test section, VTest, are both positive. Hence, 
[6] implies that liquid flows from the Venturi into the separation tank. The particles flow into the 
Venturi only if the liquid velocity into the tank does not exceed the particle's terminal velocity. 
This may occur by reducing /)Tank through either an increase in KTest or a decrease in KTank. The 
Venturi was designed so that the pipe incoming from the separation tank was inserted into the 
high-velocity region of  the Venturi. This resulted in a relatively large pressure drop for the liquid 
entering the separation tank, hence VTank was small and the particles freely entered the secondary 
loop through the Venturi. 

The velocities were measured in both the r-(radial) and z-(axial) directions. This required two 
laser beam pairs, one pair for each orthogonal direction. If  all four laser beams were to be used 
in the measurement of the volume fraction, the effect of the beam interruptions would increase. 
Even if properly corrected, the resulting accuracy would be unnecessarily low. Fortunately, the 

Table 3. Total mass flow rate and superficial velocities-- Table 4. Total mass flow rate and superficial velocities-- 
ceramic particles expanded polystyrene particles 

W ( A )  (.]'S) W (JL > ( i s  > 
[kg/sl [m/sl [m/s] [kg/s] [m/sl [m/s] 

1.095 -I- 0.055 1.410 + 0.017 0.032 5- 0.003 1.060 + 0.052 1.441 + 0.021 0.022 + 0.003 
1.469 + 0.072 1.888 4- 0.021 0.045 4- 0.004 1.304 + 0.063 1.722 4- 0.028 0.023 4- 0.004 
1.723 4- 0.084 2.196 + 0.023 0.060 4- 0.005 1.635 + 0.084 2.222 4- 0.035 0.03 ! + 0.005 
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measurements in the axial direction with a single laser beam pair satisfy completely the 
requirements for volume fraction measurement. Therefore, the velocity and volume fraction 
measurements were done sequentially. 

The fiber optic LDA probe was mounted on a special traversing mechanism, which allowed full 
probe positioning in all three orthogonal directions with an accuracy of + 1 #m. The nearest 
position of the measuring volume to the wall was established by moving it until the FEP pipe 
started interfering with the measurement. The switch from the typical velocity burst signal, 
measured on the oscilloscope, to a distorted signal due to the wall interference, was clearly evident. 
In this way we were able to establish the position of the measuring volume by knowing the 
dimensions of the FEP pipe. The closest point of the measuring volume to the pipe wall, without 
significant wall interference, was approximately at r/R = 0.985 (i.e. r = 15.1 mm), where R is the 
pipe radius. 

A single-beam traversing 7-ray densitometer was used as a reference for the volume fraction 
measurements. As shown in figures 1 and 2, a shielded container with a 5 Ci t37Cs source was placed 
just below the test section. The attenuated collimated 7-ray beam was measured using an NaI 
crystal photomultiplier, which was connected in turn to a Canberra multichannel analyzer (Series 
20). In gas/liquid systems the chordal-average gas volume fraction, (G, measured with a single-beam 
7-ray densitometer, is (Schrock 1969): 

i n ( / `  ] 
~6- \ILJ [71 

where I is the intensity of the ~,-beam through the two-phase mixture, IG is the intensity of the beam 
with the gas phase only and IL is the intensity of the beam with the liquid phase only. This equation 
cannot be applied directly to the solid phase appearing in the form of spheres. Even at the highest 
possible concentration the spherical solid particles have small gaps between them; indeed, the 
maximum achievable volume fraction with uniform spheres is 74.05%. As derived in appendix A, 
the effect of this bed porosity is accounted for in the following equation: 

(s = (s0 l n ( ~ )  [8] ln( ) 
where fs0 is the reference chordal volume fraction at the maximum particle concentration and IsL 
is the intensity of the beam when fs = (so, liquid being the continuous phase. The reference 
chordal-average volume fraction can be calculated as 

ln(IsL'~ 

(s0 = 1 -t \ / scJ  [91 
(ILL - -  / A G ) L '  

where Isc is the intensity of the beam at (s = fs0 and gas is the continuous phase. These equations 
and an estimation of the related errors are given in appendix A. 

It is important to note that ISL and Isc must be measured for the same particle configuration. 
This was achieved by first filling an empty pipe with particles and measuring the intensity of the 
beam,/so,  at (s = (s0, with air filling the gaps between the particles. A mesh at the bottom of the 
pipe held the particles in place. Next, water was poured into the pipe. This procedure was carried 
out with great care in order to maintain the same particle configuration in both cases. The intensity 
of the beam, lsL, was measured again at gs = (s0, with the liquid filling the gaps. The whole 
measurement procedure was repeated several times. All the results were within the margin of error 
estimated for this experiment. 

2.1. Separation of Large Particles from Seeding 
The purpose of the present work was to measure the phase distributions of large spherical 

particles, approximately 2 mm in diameter. In addition to the large particles, there are always 
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Figure 4. Measured transit time distribution. 

present tiny impurities or seeding, carried by the liquid phase. They are also detected by the LDA 
system and their transient time contributes to the particle volume fraction. Since an LDA system 
is sensitive to particle sizes down to 1/~m, it is difficult to get rid of  this effect. However, filtration 
helps to reduce the overall amount  and mean size of  the unwanted small particles. Figure 4 shows 
a typical transit time distribution. The peak on the left-hand side is due to the seeding, while the 
peak on the right-hand side is due to the large particles. 

It can be noticed that there is a large difference in the measured transient times of  each particle 
group, which is due to the size difference. Thus, separation can be based on the difference between 
the large particle and seeding transit times. In the case where the difference in sizes is not so large, 
other methods should be applied. Qiu et al. (1991) developed a method for distinguishing dispersed 
particles (Dp = 45.5 #m) from the seeding (Dp = 6/~m) using a phase-Doppler anemometer (PDA). 
For  both the seeding and the particles they used glass beads, which have a very smooth surface. 
In the present case, however, the high surface porosity of  the large particles distorted the PDA 
signal too much and made the use of this method inappropriate. 

Figure 4 shows four separation lines, which could be used to separate the two particle 
groups. All the particles on the right-hand side of each separation line were used to calculate the 
large particle volume fraction. The results are shown in table 5, where ts,~ stands for the transit time 
of  the ith separation line and Ei is the corresponding volume fraction. Separation line 3, which is 
placed at the minimum between the two peaks, is the one which would be normally used to separate 
particles. From figure 4 it is evident that such a separation might reject the contribution of large 
particles with small transit times (i.e. those large particles passing through the edge of the 
measurement volume). Fortunately, it was shown that this error is negligible. 

From Table 5, it follows that the difference between the values obtained using separation lines 
2 and 3 is about 1%. This difference is larger than that which would be obtained by extrapolating 
the large particle distribution towards zero and calculating the contribution to the volume fraction 
under the extrapolation line. A similar conclusion is reached for the seeding. Its contribution to 
the measured volume fraction is insignificant. Therefore, the particle separation using line 3 seems 
to be justified, resulting in the smallest error. 

Table 5. Volume fraction as a function of the transit time 
separation 

Is.i Ei Ei 
i [ms] [%] E 3 
1 1.50 0.642 0.97 
2 1.00 0.657 0.99 
3 0.58 0.663 1.00 
4 0.00 0.853 1.29 
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2.2. Corrections Due to the Finite Size o f  the LDA Measurement Volume 

A correction can be done if the size and shape of the measurement volume are known. Saffman 
(1987) proposed the use of the average burst length to determine the size of the measurement 
volume. This is valid when the particles are smaller than the measurement volume. Unfortunately, 
the same method cannot be applied here, since the large particles are several times larger than the 
measurement volume. Furthermore, the large particles interrupt the beams between the measure- 
ment point and the LDA transmitter/receiver, distorting the measured distribution of the transit 
times. The other option is to use a reference measurement to estimate the correction needed for 
the integration, as done by Sommerfeld & Qiu (1991). Their method, based on the use of a PDA, 
consisted of correcting the measured mass flux due to the uncertainties in the determination of the 
measurement volume by using a global mass balance. This was possible, since they used very small 
particles (Dp = 45.5 #m) which did not cause beam interruptions. 

We followed a similar approach. A single-beam ~-ray densitometer was used to measure the 
chordal-average volume fraction at the pipe centerline. This result was used as the calibration 
for a correction factor, C, which accounts for the uncertainties in the calculation of the 
measurement volume. It was determined in the following way: all the values in the measured volume 
fraction profile were multiplied by a guessed C, then corrected for the beam interruptions 
(using the method presented in the next section), and finally integrated over the centerline chord. 
If this value equaled that measured by the 7-ray densitometer, the procedure was ended. Otherwise, 
a new C was guessed and the same procedure repeated until the convergence was achieved. 
Note that by changing the properties of  the large particles, the calibration procedure must be 
repeated. 

This method assumes that C is not a function of  the radial position. This is not self-evident, since 
there might be some spatial differences in, for example, the transmissivity of  the medium from point 
to point. Thus, let us next consider the experimental results which justify the assumption of a 
constant C. 

The LDA probe volume is normally defined as the region in space within which the light intensity 
is at least e -2 of  its peak value at the crossing of the two Gaussian-shaped laser beams. However, 
the true measurement volume is not necessarily bounded by the e -2 contour. In fact, the 
measurement volume is just the region from where the system actually detects the scattered light 
from the particles. Besides the beam intensity, this region depends on the electronic gain, the 
transmissivity of the medium and the size and shape of the particles. The scattered intensity is 
proportional to D~ (Saffman 1987), where Dv is the particle diameter. The measurement volume 
for the large particles is therefore larger than for the seeding. Hence, the actual measurement 
volume should be bounded by e-k instead of the e -2 contour, where k > 0. In the case of the large 
particles, k should be k/> 2. The light intensity distribution, at the crossover of two Gaussian beams 
of  equal power is proportional to (Brayton 1974): 

} (2 y) 
( S ) , - ~ P e x p ~ - 2 [ x 2 c o s 0 + y 2 + z 2 s i n 0 ]  cos --~- , [10] 

rf  [ rf  

where P is the total power contained in the beam, rr is the radius of the focused Gaussian beam 
at the e -2 intensity point, x, y and z are the coordinates of the measurement volume, 0 is the 
half-angle of the beam intersection, 6 is the fringe spacing and ( S )  is the amplitude of the 
time-averaged Poynting vector, defined as 

( S )  = ½Re(E x H*). [11] 

The electric field vector E and complex conjugate of the magnetic field vector H* can be 
decomposed as 

E = El + E: [12] 

and 

H* = H~' + H*, [I 3] 
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where the subscripts 1 and 2 stand for the first and second beam, respectively. The radius of the 
focused Gaussian beam at the e -2 intensity point is defined as (Kogelnik 1965; Farmer & Brayton 
1971): 

rr = nEd '  [14] 

wheref i s  the lens focal length, 2 is the wavelength of the laser beam, E is the expansion ratio and 
d is the diameter of the unfocused beam at the e -2 intensity point. The intensity is reduced to e -k 
of its peak value when the argument of the exponent in [10] equals - k  (Brayton et al. 1973). All 
the points located at the e -k contour form an ellipsoid with parameters a, b and c. Thus, 

2 
a 2 cos 0 + b 2 + c 2 sin 0 = k ~ ; [15] 

hence 

2 a - - "  rr [161 
COS 0 ' 

2b = ~/2krr [17] 
sin 0 

and 

2c = ~ /~ r r .  [181 

The angle 0 is very small, in general. Thus, cos 0 approximately equals unity with a - c, b ~> a and 
b ~> c. Note that the size of parameters a, b and c depends on the scattered light intensity. The 
parameters affecting the scattered intensity are the size of the particles, the transmissivity of the 
medium etc. 

Next, the correction due to the integration in the measurement volume can be done. The ratio 
between the volume fraction measured at the ideal point to the volume fraction actually measured 
in the measurment volume is defined as the correction coefficient, 

NMp 

Ej(ri) 
C(r,) = J=' [19] 

NMV 

Z Ej(r,) 
J = l  

where Ej(r~) is the contribution of the j th  particle to the volume fraction measured at r~, NMp is the 
number of particles which interact with the ideal measurement point (MP) during the measurement 
time, T, and NMV is the number of particles interacting with the actual measurement volume (MV) 
with its center at r~. 

Figure 5 is used to illustrate the contribution of a single spherical particle to the volume fraction 
at the location ri. The particle's transit time, tj (i.e. the time during which the particle is in contact 
with the MP), is equal to the chordal length of the particle, which passed the ideal measurement 
point, divided by the particle's velocity, upj: 

tj 2 4 R ~ j - r 2  
- , [ 2 0 ]  

Up,j 

where, R~.j is the radius of the j t h  particle. Its contribution to the volume fraction at the location 
r~ equals the ratio between its transit time, tj, and the total time of measurement, T: 

tj 2 ~ -  r 2 1 [211 
Ej(ri) = ~ = Upo T" 

By assuming that all the particles have the same size, /~p, each particle within distance /~p 
from the location ri contribute to the volume fraction. Moreover, it can be assumed that all the 
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up 

/ ~  r ~ r t i c l .  (lit t+At) 

4 

/ R p  ~ pMoeiant u rement 

" ~  Particle (at t) 
Figure 5. Single particle contribution to the volume fraction measurement at the measurement point (MP) 

location r i. 

particles move only in the axial direction with the same velocity tip. Hence, the volume fraction 
at r~ equals 

NM~= I 12~ f~Pn r dr dqJ, [22] Ej(r,) = "(rj) 2 ~ 2  
j= dO dO rip T 

where ~O is the angle between ri and r in the plane perpendicular to the particle motion and n"(rj) 
is the concentration of particles per unit area at rj. The location of the j th particle's center, rj, can 
be expressed using the radial position of the measurement point, ri, and the distance between the 
particle center and the measurement point, r: 

rj = .x/r 2 + r z -- 2rir cos ~k. [23] 

If n" depends only on the radial position in the pipe, r~, which is usually the case, it can be expanded 
around r~ and used in [22]: 

J~' fo'-~f~pl ,On, , (r i )]2.~v_r -ff-pv ~ _=P = n"(ri) + r c o s  ~k r dr dl]l' 

4 ha p 'n"(ri) = - rc [241 
3 tip T ' 

where ~O' = qJ - n. This equation is valid as long as the first-order Taylor expansion is appropriate 
(i.e. where the spatial changes in the volume fraction can be linearized over the integration region 
in the above integral). Notice that the single particle contribution to the volume fraction equals 
the volume of the region from where the particles act on the MP times n"(r~)/tip T. 

The expression for the measured volume fraction in the MV can be derived in the same way. 
figure 6(b) depicts how a single particle interacts with the measurement volume. The transit time, 
tj, of the j th  particle equals the distance traveled by the particle, while in contact with the 
measurement volume, divided by its velocity, Upj. In the actual case only a portion of the particle's 
frontal area may contribute to the detected back scattered light. This region is shown in figure 6(a). 
It is assumed that the radius of this region, Rp, is linearly proportional to the particle radius, Rp.  

Thus, 

R~= FRp (o <. r <~ l). [25] 

The coefficient F might vary from particle to particle, and is mainly dependent on the surface 
roughness at the particle's far ends. 
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Figure 6. Single particle contribution to the volume fraction measurement at the measurement volume 
(MV) location r i. 

Figure 6(b) shows two possible contours, one for F = 1 and the second for F < 1. The general 
case with F ~< 1 is considered in the derivation of the measured volume fraction in the MV. The 
contour represents the interaction region around the measurement volume, from which each 
particle with its center in it interacts with the measurement volume. 

Let us consider the j th  particle with its center moving at rj - R~. It travels the distance/j between 
the two contour ends at rj (contour at F < 1), while in contact with the measurement volume. The 
parameters shown in figures 6(a) and (b) are defined as 

and 

R; = Rp,j sin(arccos Rpj = Rp,j sin(arccos ~ ) ,  

b; = b - (Rp,j- R;) 

R t  . 
~bj = arctan "'P'J = arctan ~ .  

Rp, j  

[26] 

[27] 

[281 

After specifying these parameters for the general case, let us assume that all the particles have 
the same size, /~p, move with the same velocity, tip, and have the same scattering coefficient, F. 
Based on [24], the measured volume fraction can be expressed as 

romp n " ( r , )  
E EJ(Fi) = (VI -[- VII) ~pT • [29] 
j=l 

The interaction volume has been divided into two regions for calculation convenience. Thus, 

V~ = ~ n (/~p - R')  (2/~p + R') [30] 
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Vt,=n f~,x2(y)dy=Tz fb,.(~o+a~l _y2~2-~,] dy 

=TzI(R2+a2)(b2-b'2)+R2pb---b ~+Rpab(2+arcs inb-~b  )-~b2(b3+b'3)]; [31] 

Vj and V. are the volumes of the two interaction regions. Each particle falling in the beam 
interruption region [figure 6(b)] is presumed to interrupt the laser beam (or beams) instead of being 
detected. The interruption region is on the side oriented towards the transmitting/receiving optics. 
Finally, the correction coefficient C equals 

4 7[/~3 

C -  ~ [32] 
( V  I "~ VII ) " 

The correction coefficient, C, as a function of  the axial dimension of the measurement volume, a, 
has been calculated for the parameters shown in table 1 and Dp = 2.32 mm for various values of 
the coefficient F. Note that the measurement volume parameters a, b and c are particle-size- 
dependent. The results are shown in figure 7. The dimension, b, of  the measurement volume has 
been calculated by choosing a first, k was obtained from [16], and finally, by using [17], b 
was calculated. These parameters were used in [30]-[32] to calculate C. In order to obtain the 
volume fraction within 10% accuracy, C should not vary more than _+0.01 mm in the present case 
(figure 7). 

The size of the measurement volume decisively affects the distribution of  the particle chordal 
lengths given by the product of  the j t h  particle's transit time and its velocity: 

lj = t:Up,j. [33] 

The distance lj equals the distance traveled by the particle at the radial position rj - R~, while in 
contact with the measurement volume [figure 6(b)]. The measured distribution of particle chordal 
lengths, lj, for 10,000 collected samples is shown in figure 8 as curve a. The distribution was 
measured near the pipe wall, at x = 0 mm and y = - 1 2  mm, in order to minimize the beam 
interruptions as much as possible. 

The model presented herein was used to predict the measured distribution for lj. Particles 
were generated randomly in the x-y plane in the region where they could intersect the 
measurement volume. The particle size distribution which was used is shown in figure 3. The 
chordal length, lj, is a function of  the position, particle size, the parameter a and the coefficient 
F. In region-I, 

lj = 2x/R2j - (x 2 + y2). [34] 
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Figure 7. Correction coefficient, C, as a function of the 
parameters a and F. 
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Figure 8. Measured and generated particle chordal length 
distributions. 
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Similarly, in region-II, 

/ j = 2  Rj+a l + ~ ) J - x  ~. [351 

The other parameters used in this simulation are given in table 1. 
The parameters a and F were estimated by fitting the measured distribution, obtained at 

x = 0 mm and y = - 12 mm (figure 8, curve a). The measured distribution had its peak at about 
2.10 ram, which is less than the mean particle size. This confirms that only part of the particle's 
frontal area scatters the light back to the receiving optics. Hence, F < 1 in the actual case. Figure 8 
shows the comparison between the measured (curve a) and the generated distributions. These 
curves were generated by keeping constant the measurement volume parameter a = 0.1 mm 
(b = 1.18 ram), while changing F. Figure 8 shows the simulation at F = 1, 0.9 and 0.85 (curves b, 
c and d, respectively). Curve c is the one which gives the best fit to the measured distribution. Thus, 
the parameters a = 0.1 mm and F = 0.9 were used in the following analysis. 

Comparing the generated distributions with the measured one in figure 8 leads to the conclusion 
that the simulations gave qualitatively good results, even if they are not good enough to estimate 
the measurement volume size with a desired accuracy. It seems that the model has captured the 
physics of the particle interaction with the measurement volume quite well. 

Next, the measured distributions at three different point along the x-axis (x = 0, 6 and 10 mm) 
were compared with that measured at x = 0 mm and y = - 12 mm. The comparison is shown in 
figure 9(a). It can be noticed that the peaks and end points of the measured distributions are all 
at the same location. They have almost identical shapes. The main difference is in the more flattened 
distributions for the data obtained at y = 0 ram. This is caused by the greater effect of  beam 
interruptions at the pipe's centerline, which tends to decrease the average length of the transit time. 

As stated before, C should not vary more than 10% in order to obtain the measured volume 
fraction within 10%. Therefore, the measurement volume parameter, a, should not vary more than 
+0.01 mm (figure 7). The parameters affecting its size are primarily the transmissivity of the 
medium, the particle size and the LDA system setup. Three distributions were generated by the 
model presented above at F = 0.9 and a = 0.11, 0.1 and 0.09, and are shown in figure 9(b). They 
have different shapes from the measured distributions in figure 9(a); whereas the measured 
distributions have almost identical shapes. Since they were measured at different radial positions, 
it can be concluded that their measurement volume size was not position-dependent. Thus, taking 
the correction coefficient, C, to be constant is justified. 

The difference in the location of the peaks and the shapes of the measured transit time 
distributions at different radial positions represents a good test for the use of  the constant 
correction coefficient, C. The negligible difference justifies the assumption that C does not vary with 
the radial position. 

2.3. Correction for Beam Interruptions 

Mari~ & Lance (1984) measured the laser beam interruption factor in bubbly flows for different 
channel widths and vapor volume fractions. They showed that this effect is far from negligible. Yu 
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Figure 9. Estimation of the change in measurement volume size: (a) measured and (b) generated particle 
chordal length distributions. 
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& Varty (1988) calculated it for bubbly flow in the case where the transmitting and receiving 
optics were separated. They neglected the possibility of  having two bubbles interrupting the 
same beam simultaneously. This effect might be negligible at low volume fractions, but at high 
volume fractions it tends to overpredict the interruptions. Let us now consider an analysis which 
takes into account the possibility of  having many particles interrupting the laser beam at the same 
instant. 

The measure of  the interruptions is defined as the ratio between the time, t, during which the 
laser beam between the transmitter/receiver and measurement point was interrupted, and the entire 
measurement time, T. This ratio is denoted by A: 

t(r) 
A (r) = T(r)" [36] 

We may assume that A is a function of  the volume fraction and its distribution: 

A (r) =f(E, r). [37] 

In the first step, A is calculated for the case shown in figure 10, assuming that the volume fraction 
Ei in subchannel ri is independent of  the volume fraction in other subchannels. This is the case for 
particles moving in confined subchannels, where they are not allowed to move between the 
subchannels. Let an observer be placed right on the interface between the channels at rl and r2, 
and let this observer measure the time fraction during which the laser beam is interrupted. Since 
the particle motion is confined to a single subchannel, each particle contributes to the volume 
fraction in that subchannel only. Because of this, an observer placed on the interface between the 
two subchannels at r~ and r 2 would measure 

A (rl) = El. [38] 

Similarly, on the interface between the subchannels at r2 and r3, 

A(rz) = E2 + (1 - cz)cl • [39] 

I f  the observer is placed now at the end of the subchannel at rs, the beam interruption measured 
would be 

A(r5) = ¢5 + (1 - ~5)[~E4 "Jl- (1 -- E4){, 3 + (1 - -  E3)[£ 2 "~ (1 - -  ¢ 2 ) ¢ 1 ] ~ ,  [40] 

which can be rearranged as 

a ( r s )  ---- ¢5 '1- ( 1  - -  ES)E 4 -I- ( 1  - -  E s ) ( 1  - -  ¢ 4 ) E 3  -Jr- ( 1  - -  ¢ 5 ) ( 1  - -  E 4 ) ( 1  - -  E3)E  2 

+ (1 -- Es)(I - -  ¢ 4 ) ( 1  - -  E 3 ) ( 1  - -  E 2 ) ¢  I [41] 

o r  

5 5 

A ( r s ) =  ~ E~ 1-I (1--Ek). [42] 
i = 1  k = i + l  

£ 

r I r 2 r 3 r 4 r 5 r 

Figure 10. Volume fraction distribution for the particle flow in subchannels. 
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The extension to N subehannels is easily obtained as 

N N 

A(r~)= ~ E, I-I (1 --Ek). [43] 
i - I  k = i + l  

In the actual case, however, the volume fractions in the subchannels are interdependent. The 
particle can contribute to the volume fraction in two subchannels simultaneously. As a result [43] 
is no longer valid. 

Let us now assume that the particles move in the axial direction only. In that case, the particle 
contribution to the beam interruption is the largest in the subchannel which includes its center. 
Hence, the subchannels can be made virtually independent by considering only the portion of the 
volume fraction due to the particles whose centers fall in that subchannel: 

E; = EiK(ri, Ar), [44] 

where K(r~, Ar) equals the fraction of the volume in the subchannel at r~, having width Ar, which 
is due to the particles having their centers in that subchannel. It is defined as 

~ Ey(r,) 
K(ri, Ar) - j= l , [45] 

Ej(ri) 
j = l  

where Nr, is the number of particles with centers in the channel at r~ and Nr,an is the number of 
all particles contributing to the volume fraction at the location r~. Equation [43] can be used now 
in the modified form 

N N 

A(ru)= ~ E~ I-I (1 --E;,) [46] 
i=1 k = i + [  

or, by [44], 

N N 

A(ru) = ~ eiK(r~, Ar) I-I [1 - e,K(rk, Ar)]. [47] 
i = l  k = i + l  

Equation [47] gives the interruption coefficient for a single laser beam. 
In order to calculate A from [47], the coefficient K(r~, Ar) must be found. The following 

assumptions were made in its calculation: 

(1) The laser beam can be approximated by a line (i.e. the laser beam's cross section 
is negligible). 

(2) All the particles have the same spherical shape and size. 
(3) The spatial changes in the particle concentration, n", can be linearized in the 

immediate vicinity of the particle. 
(4) All the particles at ri are traveling with the same velocity, ~p. 

The volume fraction at point ri is, according to [24], 

Ur~.aJ~ 4 n"tr 
ei= ~ ej(ri)= rcR 3 " ' ' i '  [48] 

j =  I "3 Up T " 

The subchannel width Ar is chosen such that Ar ,~/~p. Equation [24] leads to the following result 
for the portion of the volume fraction in the subchannel at r~ due to the particles with their centers 
in that subchannel: 

1% n "(r,) 
cj(ri) = n l~  Ar - -  [49] 

y= l  u p T  

By using [45], [48] and [49], coefficient K becomes 

3Ar 
K(ri, Ar) = K(Ar) = 4/~p" [50] 

IJMF 20/3--B 
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Combining [47] and [50] gives the fraction of the measurement time, T, during which the single 
beam is interrupted: 

At(rN)= ~, 3At ~ ( 3Ar'~ 
, :  [511 

Since the LDA system has two beams, the interruption coefficient for the beam pair at rN is 

a (rN) = A l(rN) + A 2(rN) - A t(rN).42(rN). [52] 

This equation is valid if the interruptions of  the two beams are independent (or exclusive) events, 
where A l and A 2 are the beam interruption fractions for the first and the second beam, respectively. 
However, near the measurement volume A ~ and A 2 are not independent. At the beam crossover 
the two beams lie close together, allowing some particles to interrupt both beams simultaneously. 
The coefficient K for the second beam should thus be modified in order to consider this effect. 

Figure 11 shows the shaded region from where the particles with centers within it interrupt both 
beams at the same time. Let the contribution of those particles be counted in the interruption 
fraction of the first beam. Therefore, the coefficient K for the second beam is modified as 

-~- f o r  l '  
K2(Ar)=n_R2Ar-(fl-sinfl)/~2Ar 3 A r T z - ( f l - s i n f l )  ~ < / ~ p  [53] 

and 
/ 

K2(Ar)=K,(Ar), for ~- >~/~p, [54] 
L 

where (fl - sin fl)R~Ar is equal to the volume of the shaded area in figure 11. The other parameters 
in [53] are 

and 

1' = (s - As)tan 0 [55] 

fl = 2 arccos . [56] 

Consecutively, 

s 3 A r [ ~ - - ( f l - - s i n f l ) ]  i~i { 3 A r [ ~ z - ( / ~ - s i n f l ) ] }  
A2(rjv)  = E e i -  1 - - E  k ~ - . [57] 

i=] 4/~p rt k=i+l 4Rp 

The interruption fraction of  the two beams at the location rN is finally obtained from [52] using 
the appropriate values for A ~ and A 2, calculated by [51] and [57]. 

Pipe Particle (at t+~ ' )  
wall / 

Particle (at t )  
Figure 1I. The region from where the particles interrupt both beams. 
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Table 6. Volume fraction results---ceramic particles Table 7. Volume fraction results--expanded polystyrene 
w ~s ~c.s (Ec) particles 

[kg/s] [%] [%] [%1 w ~s ~c.s (Ec) 
1.095 2.96 + 0.10 2.83 + 0.18 2.25 + 0.14 [kg/s] [%] [%] [%] 
1.469 3.30+0.15 3.30+0.22 2.23_+0.13 1.060 1.31 5:0.16 1.31 _+0.21 1.40_+0.21 
1.723 3.58_+0.17 3.75_+0.25 2.41_+0.15 1.304 1.005:0.17 1.17_+0.18 1.21_+0.18 

1.635 0.905:0.17 1.265:0.20 1.25+0.19 

Factor A should be evaluated over the entire laser beam section, s, stationed in the test section 
(see figure B1). The calculation of s is done in the Cartesian coordinate system with its origin at 
the pipe centerline and the z-coordinate oriented in the pipe axial direction. The derivation is shown 
in appendix B. Once A is obtained, the measured volume fraction, Era, at position rs can be 
calculated from the actual volume fraction, E: 

('m (rN) = E (r N)[1 -- A (rN) ]. [58] 

However, if Em is known instead, E is 

£m(rN) 
E(rN) = [1 -- A (rN) ] " [59] 

The main error related to the coefficient A is due to the deviation from the mean particle 
diameter. Therefore, the particle size distribution must be known in order to estimate the error of  
the correction procedure. The particle size distribution for the present case is shown in figure 3. 
It should be noted that the data correction procedure presented in this section is limited to dilute 
solid/liquid slurries. For  high solid volume fractions, the required correction would be large and 
has not been verified in this study. 

3. RESULTS AND D IS CU S S IO N  

3.1. Volume Fract ion Da ta  

The data for solid/fluid flow with ceramic particles are given in appendix C. They were taken 
for slurries at three different liquid flow rates. The corresponding 7-densitometer results for Es are 
given in table 6. 

The correction coefficient, C, has been calculated with the (s-value at w = 1.469 kg/s. The mean 
value of  C was obtained by fitting E s = 3.30%, using Dp = 2.32 mm in the interruption model. The 
error was estimated from the error in gs and this error was related to the correction for the 
interruptions. At a constant global volume fraction, smaller particles interrupt the beams at a 
higher rate than the large ones. Since the model for the interruption correction is particle-size- 
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Figure 12. Corrected and uncorrected volume fraction 
profiles of the solid phase; solid/liquid flow with ceramic 
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dependent, Dp,min=(2.32-0.07) mm and gS,min=(3.30-0.15)% were used to determine the 
lower margin of C, Cm~n. Similarly, larger particles with Dp,max=(2.32+0.07)mm and 
Es,n~ax = (3.30 + 0.15)% were used to calculate Cmax. The resultant C and its standard deviation are: 

C = 0.88 +_ 0.04. [60] 

This value has been used to correct the data. The estimation of the error in the corrected volume 
fraction, AEc, was based on the calculated error in the y-ray measurements, AEs, and on the 
measured standard deviation of the particle size, the latter being the main source of error in the 
correction model: 

A E C  : £ C , m a x  - -  £ C ,  m i n ,  [61] 

where Ec,~ was obtained using the upper margin of Cm~x = 0.92 and Cc,~, was obtained with the 
lower margin of Cm~n = 0.88. 

Table 6 shows the chordal, Ec, s, and global, (E c) ,  average volume fractions, both calculated from 
the corrected volume fraction profiles. The global volume fraction, (Ec), was obtained by 
integrating the corrected local volume fraction, Ec, over the pipe's cross section. The error in (Ec) 
was obtained from the error associated with Ec. Similarly, the chordal-average volume fraction, 
Zc, s, was obtained by integrating the corrected volume fraction profiles over the chord at the pipe's 
centerline. Table 6 also gives the values of the chordal-average volume fraction, Es, measured by 
the single-beam 7-ray densitometer. It can be noted that the values for fc,s and gs are in good 
agreement for all the flow rates tested. To isolate the effect of the liquid velocity of the phase 
distribution, the data were obtained at an essentially constant global volume fraction, (Ec,s). 
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solid/liquid flow with ceramic particles, solid/liquid flow with expanded polystyrene particles. 

The distributions of the corrected volume fraction profiles for the ceramic particles are shown 
in figure 12. Each point is plotted with its error bar in order to clarify the uncertainty in the 
measured results. A slight wall peak occurs at w = 1.095 kg/s; however, on increasing the liquid 
flow rate, the peak shifts towards the pipe's centerline (i.e. coring occurs). As can be seen in 
figure 13, similar trends were observed by Sakaguchi et al. (1991), however at different values of  
the superficial liquid velocities, <JL >, and volume fractions, <E >. These differences are probably due 
to the fact that they used ceramic particles which were 4 mm in diameter, with a density equal to 
2400 kg/m 3, and a pipe 30.8 mm in diameter. 

It is also interesting to compare our results with the data of Lee & Durst (1982). In a similar 
experiment they observed that there was a particle-free region near the pipe walls in liquid flow 
for dispersed glass particles, 400 and 800/~m in diameter. The present data (figure 12) give 
essentially the same results. In any event, in all three studies, at the higher liquid velocities, there 
is a near-wall region, 0.8 < r / R  < 1, with almost no particles. 

Data for the fluid flow with the expanded polystyrene particles are tabulated in appendix D. The 
correction factor which was obtained for w = 1.060 kg/s was C = 0.80 _ 0.10. Table 7 shows the 
corrected chordal-average, ~c.s, global volume fractions, <Ec>, and the chordal-average solid 
fraction, gs, measured by the single beam ),-ray densitometer. Once again, the values ~c.s and Es 
are in fairly good agreement. 

The volume fraction distribution for the expanded polystyrene particles is shown in figures 14. 
A large wall peak is observed at the lowest liquid flow rate and flattens with the increase in the 
flow rate. 
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Figure 17. Axial turbulent fluctuations, u~. s, for the solid 
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Figure 19. Axial turbulent fluctuations u~. s for the solid 
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Figure 20. Axial turbulent fluctuations u~,L for the liquid 
phase; solid/liquid flow with expanded polystyrene particles. 

3.2. Axial Velocity Data 

The axial mean velocity, U~, profiles for the ceramic particles and water are shown in Figure 15. 
As expected, the particles lag the liquid phase near the pipe's centerline, because of the negative 
buoyancy. The inverse effect is observed near the wall, i.e. the particles move faster than the liquid. 
At first sight, this seems controversial, however, the higher particle velocity near the wall is easily 
explained. The particles are large enough to be influenced not only by the slow moving liquid near 
the wall, but also by the liquid in the high-velocity region farther away from the wall. The net result 
is that the particles move faster than the liquid phase close to the wall, where the liquid velocity 
profile is steep. 

It can be noticed that the higher the liquid flow rate, the lower the relative velocity between the 
particles and the liquid at the pipe's centerline. The opposite trend is observed in the volume 
fraction distribution, which tends to increase at the centerline with an increase in the flow rate. 
The observed reduction in the particle's relative velocity, VR, is consistent with the increase in the 
volume fraction at the pipe centerline. 

Figure 16 shows the velocity profiles for the expanded polystyrene particles. As expected, 
because of their positive buoyancy, the particles move faster than the liquid. Contrary to the 
ceramic particles, there is no switch in the sign of the light particle's relative velocity near 
the wall; however, at the lowest liquid flow rate, the relative velocity is reduced in the region 
near the wall. 
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Figure 21. Radial turbulent fluctuations u;. s for the solid Figure 22. Radial turbulent fluctuations U:,L for the liquid 
phase; solid/liquid flow with ceramic particles, phase; solid/liquid flow with ceramic particles. 
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Figure 23. Radial turbulent fluctuations U~,s for the solid Figure 24. Radial turbulent fluctuations u~, L for the liquid 
phase; solid/liquid flow with expanded polystyrene particles, phase; solid/liquid flow with expanded polystyrene particles. 

3.3. The Turbulence Structure 

The measured axial turbulent fluctuations are shown in figures 17-20. The distributions of the 
turbulence intensities in the axial direction for the liquid phase, ti~. L (figures 18 and 20) are quite 
interesting. There is a sharp increase in the fluctuations near the pipe wall, very probably caused 
by particle-induced turbulence and vortex shedding behind the particles, which, in general, move 
faster than the liquid near the wall. Furthermore, we can see in figure 17 that the magnitude of 
the turbulence intensity in the flow with the ceramic particles does not change much near the pipe's 
centerline at different flow rates. The same trend is seen for the liquid phase in figure 18. In 
contrast, a different trend is seen for the flow with expanded polystyrene particles (figures 19 
and 20). 

The radial turbulent velocity fluctuations, ti;, are shown in figures 21-24. Comparing the 
turbulence intensity distributions at different flow rates, a noticeable change is seen near the pipe's 
centerline for the flow with both type particles. In addition, if the radial and axial fluctuations for 
both phases are compared, the conclusion is that, in general, the magnitudes of the particle 
turbulence intensities are larger for the flow with the expanded polystyrene particles. That is, the 
turbulent intensity of the heavy ceramic particles, which have relatively large inertia, is damped 
in comparison with the light polystyrene particles. Interestingly, the liquid phase turbulence is not 
affected much by the change in particle density. There is, however, a slight decrease in the 
turbulence level in the flow with the ceramic particles, which seems reasonable because of the larger 
inertia of these particles. 
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Figure 25. Reynolds stress -(u~u~) s for the solid phase; 
solid/liquid flow with ceramic particles. 
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Figure 28. Reynolds stress - (u~u~)  L for the liquid phase; 
solid/liquid flow with expanded polystyrene particles. 

The measured Reynolds stresses, u~u:, are displayed in figures 25-28. By comparing the 
magnitude of  the Reynolds stress distributions for the flow with the ceramic particles and the 
expanded polystyrene particles, the same conclusions are reached as before; the Reynolds stresses 
of  the solid phase are larger for the flows with the expanded polystyrene particles. 

4. S U M M A R Y  AND C O N C L U S I O N S  

A method has been developed which uses an LDA system for volume fraction measurements 
in solid/fluid flow. The method is valid for dilute concentrations of spherical particles, which are 
much larger than the fluid's seeding, and where the spatial changes in the particle concentration, 
n", can be linearized in the immediate vicinity of the particles. It consists of correction procedures 
which account for the biases in the measured time fractions used to calculate the volume fraction. 
These biases are caused by the presence of the natural seeding, the finite measurement volume size 
and beam interruptions. 

The clearly visible separation of the large particles from the seeding made the first effect negligibly 
small. This separation is based on the large difference between the sizes of the seeding and the 
dispersed particles. 

A correction coefficient was introduced which accounts for the finite size of the measurement 
volume. A single-beam ?-ray densitometer was used as a calibration device in its calculation. The 
method is based on the assumption that the size of the measurement volume does not vary with 
the radial position. The analyses of the interaction physics between the large particles and the 
measurement volume gave a criterion, which should be applied to test the plausibility of this 
assumption for any set of experimental data. The correction coefficient is a function of the particle 
properties. Therefore, it requires new calibration by the ?-densitometer for each new set of the 
particles. 

The model for the correction due to beam interruptions accounts for the possibility of many 
particles interrupting the laser beams at the same time. It requires a known size distribution of the 
particles in use, which should be measured for each new set of particles used. The standard 
deviation from the mean particle size was used to estimate the error in the correction procedure. 
It gives the reliability of the whole procedure and should be carefully calculated each time the 
method is employed. 

Detailed measurements of the phase distribution and turbulence structure for solid/fluid upflow 
in a pipe were made. The particles used were ceramic and expanded polystyrene particles. The 
velocity, turbulence intensity and Reynolds stresses were measured using a two-dimensional LDA. 
The LDA system allowed for accurate measurements of  both the solid- and liquid-phase velocities. 
The local volume fraction was measured with an LDA system, and was calibrated against a 
single-beam ~,-ray densitometer. The corrected volume fraction profiles for the ceramic particles 
show an almost uniform distribution across the pipe cross section at low liquid flows, while particle 
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coring was observed at higher liquid flow rates. These trends are in basic agreement with the data 
obtained by Akagawa et al. (1989) and Sakaguchi et al. (1991). In contrast, wall peaking was 
observed for expanded polystyrene particles. 
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APPENDIX A 

Assuming that the two-phase mixture is well-mixed, and the attenuation of the 7-beam in air 
is neglected, the beam intensity measured by the detector is 

I = I0 exp ( -2#w W)exp{ - Lu L + (s (/~s - PL)]L}, [AI] 

where I0 is the unattenuated beam intensity, W is the wall thickness, L is the chord length of the 
pipe at the centerline (both quantities in cm), #w, PL and #s are the macroscopic attenuation cross 
sections for the wall, liquid and solid phase, respectively (all in cm-~). The beam intensity, measured 
by the detector, with liquid only in the pipe is 

IL = I0 exp(-- 2pw W)exp(-- PL L). [A2] 

Similarly, for the case of the mixture with the maximum possible concentration of particles, (s0, 
the 7-beam intensity is 

ISL = I0 exp( -- 2#w W)exp{ - [#C + is0 (/~s -- #L)]L }. [A3] 

Dividing [A1] by [A2] gives 

I 
IL = exp[ -- is (#s -- #L)L ]. [A4] 

Similarly, the ratio between [A3] and [A2] leads to 

IsL 
L-L = exp[--is0(/~s -- #L)L]. [A5] 

Taking the natural logarithm of [A4] and [A5] and then rearranging their ratio, yields 

is = iso • [A61 

The error in is is obtained by a "propagation-of-error" analysis: 

- +Ms V (0 s V 
By using [A6] in [A7] the following result is obtained: 

[A8] 

ISL and ISG need to be measured for establishing the reference chordal volume fraction, is0. The 
pipe is first filled with the particles, air filling the voids between them. The attenuated intensity ISG 
for this case is 

Isc = I0 exp(-2Uw W)exp{-  ~ o  + is0 (#s --/~G)]L }, [A9] 
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where #G is the macroscopic attenuation cross section of the gas. Next, liquid is poured into the 
pipe, displacing the air, and the intensity is measured at the same spot. The intensity measured 
corresponds to ISL, obtained by [A3]. The ratio between ISL and ISG is then 

Is-! = exp[-- (1 -- (so) (/-/L - -  ~ / G ) L  ]. 
Isc 

By rearranging, the reference chordal volume fraction, (so, is 

(~'gL - -  ~ ' / G ) L "  
(so= 1-~ 

Hence, the error in (s0 is estimated to be 

I A(SO')2 = I ! i//s_~_i]2 F(A/sL'~2 (A/SG'~2 1 /(/sLx~2 <AL'~2-] 
~so) (/aL--#G)L +In L\ ZSL ) +\/--~--G ) + nk/--~J k--L) J" 

[A10] 

[A1 l] 

[A12] 

By assuming a Poisson distribution of the measured counts, the following expression is obtained 
for the error in the relative intensity: 

AI 1 
~-  = V / ~  , [A13] 

where N is the total number of counts• 

A P P E N D I X  B 

The position of the measuring volume is at x, y and fixed z (the measurements are performed 
in the x - y  plane at constant z). Figure B1 shows the geometry involved in the calculation. The 
angle between the beam and the y coordinate is denoted by ~. The relations between the parameters 
in Figure B1 are: 

y = ~ - ~ - arctan , [BI] 

dMv = v/X -3 + y:, [B2] 

~/= a r c s i n ( - ~  sin , )  [B3] 

and 

= n -- 7 - ~/. [B4] 
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Figure BI. The geometry involved with the calculation of K 2. 
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The length of the beam section in the pipe is 

R sin q~ 
s = ~ [B5]  

sin 7 

If As in figure B 1 represents the length from the wall to a certain location in the beam, that location 
is at the following distance from the pipe's centerline: 

r = ~ / A s  2 + R 2 - 2 A s R  cos q. [B6] 

Equations [51] and [57] are evaluated at the location at r. 

A P P E N D I X  C 

Data f o r  the Ceramic Particles 

Table CI. w = 1.095 kg/s, ( J L ) =  1.410 m/s and ( J s ) =  0.032 m/s 

U~,S Idz,L Ur,S U;,L - - (U~U;)  S --(UzU;)L 
U~, s Uz, L • 10 -2 ' 10 -2 " 10 -2 ' 10 -2 • 10 -4 ' 10 -4 E E c AE c 

rib [m/s] [m/s] [m/s] [m/s] [m/s] [m/s] [m2/s :] [m2/s 21 [%] [%] [%] 

0.00 1.579 1.814 6.65 9.02 3.22 5.11 0.00 0.00 2.44 3.32 0.24 
0.13 1.571 1.808 7.07 9.32 3.22 5.19 2.56 6.54 2.54 3.42 0.25 
0.26 1.538 1.754 7.81 10.86 3.30 5.46 5.42 12.65 2.80 3.70 0.27 
0.39 1.487 1.710 8.06 12,01 3.53 5.87 8.86 21.49 3.00 3.81 0.26 
0.52 1.429 1.623 8.55 12.88 3.54 6.10 11.65 26.21 3.46 4.08 0.25 
0.65 1.366 1.550 8.72 13,27 3.68 6.59 10.64 29.91 3.16 3.32 0.19 
0.72 1.345 1.503 8.58 13,08 3.86 6.91 11.85 32.95 2.68 2.63 0.14 
0.78 1.317 1.438 8.77 13,05 3.62 7.07 11.42 33.39 1.72 1.60 0.08 
0.85 1.286 1.368 8.95 13,71 3.57 7.54 10.91 40.87 0.76 0.69 0.03 
0.92 1.252 1.242 9.31 14,99 3.62 7.62 14.63 45.05 0.17 0.17 0.07 
0.95 1.240 1.144 7.58 16,86 2.35 7.24 8,88 41.59 0.05 0.05 0.01 
0.98 0.861 21,84 4.56 40.01 

Table C2. w = 1.469 kg/s, (JL) = 1.888 m/s and ( J s )  = 0.045 m/s 

Uz. S Uz, L • 10 -2 . 10 -2 - 10 -2 . I0  2 . 10 -4 - 10 -4 E ~:c A~c 

r/R [m/sl [m/s] [m/s] [m/s] [m/s] [m/s] [m2/s 2] [mZ/s 2] [%] [%] [%] 

0.00 2.145 2.329 7.23 I0.31 3.40 5.66 0.00 0.00 3.83 5.45 0.42 
0.13 2.130 2.333 7.44 10.05 3.44 5.70 4.41 7.07 3.87 5.43 0.41 
0.26 2.087 2.317 8.36 10.96 3,71 6.10 7.87 13.74 4.03 5.36 0.39 
0.39 2.054 2.270 9.58 12.20 3.85 6.68 12.22 23.19 3.67 4.51 0.29 
0.52 1.994 2.184 10.50 14.24 4.32 7.43 16.61 32.63 3.41 3.79 0.22 
0.65 1.923 2.089 10.59 15.64 4.62 8.16 17.84 44.56 2.53 2.52 0.13 
0.72 1,891 2.032 10.70 16.46 4.83 8.41 22.14 49.89 1.82 1.73 0.09 
0.78 1.839 1.911 11.90 17.10 4.72 8.64 25.61 49.85 1.11 1.03 0.05 
0.85 1.785 1.799 11.86 17.78 4.43 9.19 21.55 59.90 0.59 0.53 0.03 
0.92 1.699 1.662 12.13 18.19 4.18 9.42 22.43 60.50 0.21 0.19 0.01 
0.95 1.660 1.559 11.76 19.52 3.62 9.27 17.24 55.04 0.08 0.07 0.01 
0.98 1.585 1.272 12.07 25.39 3.06 8.16 18.00 57.51 

Table C3. w = 1.723 kg/s, (JL) = 2.196m/s and ( J s )  = 0.060 m/s 

U~.s Uz.L "10  2 .10-2 . 1 0 - 2  "10  2 . 1 0 - 4  , 1 0 - 4  E ~C A~C 

r/R [m/s] [m/s] [m/s] [m/s] lm/s] [m/s] [m2/s 2] lm2/s2] l%] [%1 l%] 
0.00 2.666 2.832 6.66 11.58 4.15 6.59 0.00 0.00 4.60 6,93 0.57 
0.13 2.650 2.817 7.11 11.74 4.21 6.60 4.43 5.60 4.62 6.80 0.54 
0.26 2.613 2.760 8.63 12.37 4.25 6.93 8.96 15.22 4.50 6.18 0.46 
0.39 2.553 2.683 9.85 13.81 4.52 7.71 13.51 30.28 3.97 4,94 0.33 
0.52 2.467 2.537 11.62 16.54 4.96 8.91 21.01 51.78 3.40 3.79 0.22 
0.65 2.404 2.440 12.55 18.33 5.38 9.38 27.85 58.48 2.30 2,31 0.12 
0.72 2.331 2.348 14.08 20.11 5.57 9.50 35.51 68.78 1.78 1,71 0.09 
0.78 2.266 2.227 14.80 21.13 5.39 10.22 37.09 77.33 1.21 1A4 0.06 
0.85 2.179 2.099 15.94 21.96 5.53 10.40 42.23 78.22 0.84 0.76 0.04 
0.92 2.051 1.901 16.04 21.84 4.70 10.49 32.10 68.51 0.39 0,34 0.02 
0.95 1,984 1.761 15.72 22.44 4.25 10.09 36.27 70.39 0.17 0,16 0.01 
0.98 1.851 1.423 13.98 27.40 4.01 9.14 17.39 76.98 



PHASE DISTRIBUTION AND TURBULENCE STRUCTURE FOR SOLID/FLUID UPFLOW 

A P P E N D I X  D 

Data  f o r  the Expanded Polystyrene Particles 

Table D1. w = 1.060 kg/s, (Jr. > = 1,441 m/s and (is > = 0.022 m/s 
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r /R  
Uz.$ 

[m/s] 

u;.s u;.L u;.s u;.~ -(u;u;)s -(u;u;k 
U~, L .10 -2 .10 -2 .10-2 .10-2 .10-4 .10-4 

[m/s] [m/s] [m/s] [m/s] [m/~ [m2/s 2] lm;/s~ 
~c AEc 

[0/°1 [*/ol [%1 

0.00 
0.13 
0.26 
0.39 
0.52 
0.65 
0.78 
0.85 
0.88 
0.92 
0.95 
0.96 
0.98 

1.996 1.815 10.23 8.83 4.90 5.16 0.00 0.00 
1.989 1.815 11.07 8.98 5.21 5.20 1.96 4.74 
1.947 1.790 11.74 8.94 5.11 5.65 8.10 13.33 
1.875 1.732 12.03 10.12 5.37 6.07 13.35 20.17 
1.798 1.656 12.69 11.35 5.77 6.45 19.33 26.15 
1.701 1.570 12.91 12.56 5.82 6.95 24.22 32.52 
1.542 1.431 14.50 14.30 6.06 7.39 32.26 41.67 
1.428 1.344 13.60 14.60 5.55 7.61 28.95 40.87 
1.347 1.289 12.75 14.63 4.64 7.62 20.02 41.29 
1.307 1.270 12.23 15.18 4.03 7.78 10.79 43.96 
1.214 1.169 12.37 16.45 3.26 7.63 11.37 49.68 
1,150 1.082 12.25 17.93 2.74 6.94 8.21 37.80 
1.065 0.918 12.88 20.85 2.40 5.50 8.12 39.53 

1.05 1.13 0.20 
1.05 1.13 0.19 
1.14 1.20 0.21 
1.21 1.27 0.21 
1.29 1.33 0.22 
1.34 1.34 0.21 
1.44 1.38 0.21 
1.55 1.48 0.22 
2.29 2.08 0.30 
2.63 2.21 0.31 
2.12 1.69 0.21 
1.45 1.16 0.15 
0.78 0.83 0.10 

Table D2. w = 1.304 kg/s, (JL> = 1.772 m/s and (Js> = 0.023 m/s 

r/n 
Uz,s 

[m/s] 

u;, s u'~. L U;,s u;,L -(u'~u;) s - (u~u;k  
Uz, L • 10-2  . 10-2  .10-2 . 10-2 . 10-4  . 10-4  

[m/s] [m/s] [m/s] [m/s] [m/s] [mZ/s 2] [m2/s 2] 
E Ec AEc 

[%1 [O/o1 [%1 

0.00 
0.13 
0.26 
0.39 
0.52 
0.65 
0.78 
0.85 
0.88 
0.92 
0.95 
0.96 
0.98 

2.403 2.265 11.77 10.76 6.27 6.39 0.00 0,00 
2.385 2.254 12.06 10.77 6.32 6.36 6.28 9.22 
2.339 2.208 13.47 12.42 6.49 6.67 14.38 19.53 
2.257 2.129 14.82 14.56 6.84 7.36 27.93 30.21 
2.160 2.036 15.84 16.70 7.08 7.72 35.80 42.09 
2.043 1.906 16.65 16.37 7.31 8.28 42.48 45.34 
1.876 1.772 16.01 16.90 7.16 8.66 42.11 54.65 
1.752 1.665 15.24 17.28 6.55 8.78 35.93 57.59 
1.696 1.607 14.97 17.65 5.71 8.90 25.96 58.53 
1.620 1.527 14.73 17.80 4.84 9.06 19.00 57.32 
1.523 1.420 14.79 19.66 3.99 9.08 16.18 67.43 
1.438 1.309 14.74 21.92 3.30 8.30 14.10 62.60 
1.322 1.071 14.48 24.51 2.78 7.01 8.95 66.74 

0.97 1.01 0.17 
1.01 1.05 0.17 
1.07 1.10 0.18 
1.15 1.17 0.19 
1.22 1.22 0.20 
1.29 1.26 0.20 
1.40 1.30 0.19 
1.46 1.33 0.19 
1.81 1.60 0.23 
2.04 1.65 0.23 
1.47 1.17 0.15 
0.98 0.78 0.10 
0.47 0.44 0.06 

Table D3. w = 1.635 kg/s, (JL> = 2.222 m/s and ( i s )  = 0.031 m/s 

r/n 
Uz,s 

[m/s] 

u'~.s u'., u;.~ u;.L -(u'u;)s -(u;u;), 
Uz, L . 10-2 . 10-2 . 10-2 . 10-2 . 10-4 . 10-4 

[m/s] [m/s] [m/s] [m/s] [m/s] [m2/s 2] [m2/s 2] 
E ~c AEc 

[%1 [%1 [%] 

0.00 
0.13 
0.26 
0.39 
0.52 
0.65 
0.78 
0.85 
0.88 
0.92 
0.93 
0.95 
0.96 
0.98 

2.946 2.818 14.67 12.99 7.58 7.83 0.00 0.00 
2.921 2.800 15.41 13.77 7.48 7.91 12.81 12.30 
2.880 2.759 16.64 14.96 7.81 8.29 26.44 24.32 
2.794 2.663 18.25 17.71 7.87 8.84 35.95 46.52 
2.683 2.545 19.38 19.70 8.53 9.62 45.85 58.37 
2.549 2 . 4 0 8  20.38 20.52 8.75 9.69 62.05 64.31 
2.351 2 . 2 3 0  21.03 22.01 8.63 10.39 62.33 78.84 
2.230 2.105 20.31 22.64 8.35 10.38 56.43 80.33 
2.150 2 . 0 2 5  20.50 22.87 7.51 10.42 51.67 86.75 
2.053 1.911 19.42 22.80 6.51 10.43 37.18 79.64 
2.012 1.863 19.65 22.44 6.05 10.61 31.84 85.55 
1.955 1.773 18.72 22.98 5.37 10.48 27.90 80.12 
1.887 1.626 18.68 23.89 4.60 9.71 25.19 76.73 
1.788 1.327 16.90 28.92 3.44 8.19 17.39 82.92 

1.08 1.14 0.19 
1.13 1.20 0.21 
1.24 1.29 0.22 
1.27 1.31 0,22 
1.35 1.36 0.22 
1.38 1.35 0.21 
1.53 1.41 0.20 
1.51 1.36 0.19 
1.77 1.53 0.21 
1.68 1.36 0.18 
1.39 1.14 0.15 
1.07 0.86 0.11 
0.68 0.55 0.07 
0.30 0.24 0.03 


